La tecnologia nel retail è al centro dell’attenzione: ogni settimana si parla di nuove soluzioni di IA, automazione e analytics. Ma, dietro il rumore mediatico, è in corso un cambiamento più profondo e silenzioso, con un impatto concreto sul modo in cui i retailer gestiscono il category management.
Oggi i retailer devono affrontare una tensione costante: come mantenere una direzione strategica chiara pur rispondendo a mercati sempre più dinamici, frammentati e imprevedibili. Assortimento e pricing, un tempo rivisti su base stagionale o trimestrale, sono ora leve quotidiane, talvolta persino orarie. In questo scenario, il category management deve evolvere in un’ottica data-driven e proattiva, capace di sostenere decisioni rapide senza perdere coerenza strategica.
In dunnhumby, questa trasformazione è centrale nel lavoro che svolgiamo su pricing e assortimento. Aiutiamo, infatti, i retailer a passare da piani statici a ecosistemi decisionali dinamici che riflettono i comportamenti reali dei clienti, quasi in tempo reale.
Il category management tradizionale si è sempre basato su strutture solide: ruoli di categoria, gamme curate, architetture di prezzo definite e riviste periodicamente. Tutto questo rimane importante, ma nell’attuale contesto influenzato da inflazione, crescita dell’online, problemi di approvvigionamento e aspettative dei consumatori in evoluzione, non basta più.
Il category management ora deve diventare un sistema basato sulla strategia cliente, ma abbastanza flessibile da adattarsi al variare delle condizioni. Significa utilizzare dati in tempo reale per cogliere i segnali di domanda nel momento in cui si manifestano. Significa allineare l’assortimento a ciò che i clienti vogliono davvero, non solo a ciò che entra nel planogramma. E significa considerare il prezzo come parte di un sistema decisionale più ampio, non come una decisione isolata dal resto.
Questi sono i principi alla base dell’approccio di dunnhumby su pricing e gestione dell’assortimento: non solo strumenti, ma un nuovo modo di prendere decisioni.
La necessità di reagire con velocità e precisione è in crescita. I nostri recenti studi Consumer Pulse1 e Consumer Trends Tracker2 mostrano che l’incertezza economica globale ha reso i clienti più selettivi, mentre la frammentazione dei canali ha reso i comportamenti meno prevedibili sulla base delle tendenze storiche. La sfida per i retailer è gestire questa complessità senza diventare reattivi. Occorre equilibrio: pianificare in modo solido, ma muoversi con agilità.
La combinazione vincente è una strategia chiara abilitata da dati migliori. L’assortimento funziona meglio quando è guidato da analisi d’impatto in tempo reale, senza perdere di vista i clienti più fedeli o i target demografici. Invece, il pricing diventa più efficace quando integra elasticità della domanda, percezione del valore e sensibilità del cliente. Questi sono concetti ben noti, ma oggi possono essere applicati in tempo reale, su larga scala e con impatti misurabili.
Questo cambiamento non implica abbandonare le leve tradizionali. Si tratta di ricalibrarle per un ambiente più dinamico: capire dove intervenire, quando farlo e cosa davvero conta. Con dati affidabili a supporto.
Adottare un category management abilitato dalla tecnologia non significa solo introdurre una piattaforma o alimentare un nuovo flusso dati. È un cambio di modello operativo. Significa creare un sistema che aumenta la visibilità senza creare complessità, che permette ai team di agire e non solo di analizzare, che coniuga strategia e rapidità.
Il futuro non è scegliere tra intuizione e dati, tra struttura e velocità. È trovare la combinazione giusta e farla evolvere insieme al mercato. È qui che risiede la vera opportunità per il retail di oggi.
1dunnhumby Consumer Pulse, giugno 2025
2dunnhumby Consumer Trends Tracker, maggio 2025
Actionable insight for sustainable category growth
Optimise categories with customer dataCreate customer-centric ranges using AI-powered science
Make better assortment decisions
| Cookie | Description |
|---|---|
| cli_user_preference | The cookie is set by the GDPR Cookie Consent plugin and is used to store the yes/no selection the consent given for cookie usage. It does not store any personal data. |
| cookielawinfo-checkbox-advertisement | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category . |
| cookielawinfo-checkbox-analytics | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Analytics" category . |
| cookielawinfo-checkbox-necessary | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
| CookieLawInfoConsent | The cookie is set by the GDPR Cookie Consent plugin and is used to store the summary of the consent given for cookie usage. It does not store any personal data. |
| viewed_cookie_policy | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
| wsaffinity | Set by the dunnhumby website, that allows all subsequent traffic and requests from an initial client session to be passed to the same server in the pool. Session affinity is also referred to as session persistence, server affinity, server persistence, or server sticky. |
| Cookie | Description |
|---|---|
| passster | Set by Passster to remember that a visitor has entered a correct password, so they don’t have to re-enter it across protected pages. |
| wordpress_test_cookie | WordPress cookie to read if cookies can be placed, and lasts for the session. |
| wp_lang | This cookie is used to remember the language chosen by the user while browsing. |
| Cookie | Description |
|---|---|
| fs_cid | Set by FullStory to correlate sessions for diagnostics and session consistency; not always set. |
| fs_lua | Set by FullStory to record the time of the user’s last activity, helping manage session timeouts. |
| fs_session | Set by FullStory to manage session flow and recording. Not always visible or applicable across all implementations. |
| fs_uid | Set by FullStory to uniquely identify a user’s browser. Used for session replay and user analytics. Does not contain personal data directly. |
| VISITOR_INFO1_LIVE | Set by YouTube to estimate user bandwidth and improve video quality by adjusting playback speed. |
| VISITOR_PRIVACY_METADATA | Set by YouTube to store privacy preferences and metadata related to user consent and settings. |
| vuid | Vimeo installs this cookie to collect tracking information by setting a unique ID to embed videos to the website. |
| YSC | Set by YouTube to track user sessions and maintain video playback state during a browser session. |
| _ga | The _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors. |
| _ga_* | Set by Google Analytics to persist session state. |
| _gid | Installed by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously. |
| _lfa | This cookie is set by the provider Leadfeeder to identify the IP address of devices visiting the website, in order to retarget multiple users routing from the same IP address. |
| __Secure-ROLLOUT_TOKEN | YouTube sets this cookie via embedded videos to manage feature rollouts. |
| Cookie | Description |
|---|---|
| aam_uuid | Set by LinkedIn, for ID sync for Adobe Audience Manager. |
| AEC | Set by Google, ‘AEC’ cookies ensure that requests within a browsing session are made by the user, and not by other sites. These cookies prevent malicious sites from acting on behalf of a user without that user’s knowledge. |
| AMCVS_14215E3D5995C57C0A495C55%40AdobeOrg | Set by LinkedIn, indicates the start of a session for Adobe Experience Cloud. |
| AMCV_14215E3D5995C57C0A495C55%40AdobeOrg | Set by LinkedIn, Unique Identifier for Adobe Experience Cloud. |
| AnalyticsSyncHistory | Set by LinkedIn, used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
| bcookie | LinkedIn sets this cookie from LinkedIn share buttons and ad tags to recognise browser ID. |
| bscookie | LinkedIn sets this cookie to store performed actions on the website. |
| DV | Set by Google, used for the purpose of targeted advertising, to collect information about how visitors use our site. |
| gpv_pn | Set by LinkedIn, used to retain and fetch previous page visited in Adobe Analytics. |
| lang | Session-based cookie, set by LinkedIn, used to set default locale/language. |
| lidc | Set by LinkedIn, used for routing from Share buttons and ad tags. |
| lidc | LinkedIn sets the lidc cookie to facilitate data center selection. |
| li_gc | Set by LinkedIn to store consent of guests regarding the use of cookies for non-essential purposes. |
| li_sugr | Set by LinkedIn, used to make a probabilistic match of a user's identity outside the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
| lms_analytics | Set by LinkedIn to identify LinkedIn Members in the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland) for analytics. |
| lpv[AccountID] | This cookie is set by Salesforce Marketing Cloud Account Engagement. Prevents counting multiple page views within a short window to avoid duplicate tracking. |
| NID | Set by Google, registers a unique ID that identifies a returning user’s device. The ID is used for targeted ads. |
| OGP / OGPC | Set by Google, cookie enables the functionality of Google Maps. |
| OTZ | Set by Google, used to support Google’s advertising services. This cookie is used by Google Analytics to provide an analysis of website visitors in aggregate. |
| s_cc | Set by LinkedIn, used to determine if cookies are enabled for Adobe Analytics. |
| s_ips | Set by LinkedIn, tracks percent of page viewed. |
| s_plt | Set by LinkedIn, this cookie tracks the time that the previous page took to load. |
| s_pltp | Set by LinkedIn, this cookie provides page name value (URL) for use by Adobe Analytics. |
| s_ppv | Set by LinkedIn, used by Adobe Analytics to retain and fetch what percentage of a page was viewed. |
| s_sq | Set by LinkedIn, used to store information about the previous link that was clicked on by the user by Adobe Analytics. |
| s_tp | Set by LinkedIn, this cookie measures a visitor’s scroll activity to see how much of a page they view before moving on to another page. |
| s_tslv | Set by LinkedIn, used to retain and fetch time since last visit in Adobe Analytics. |
| test_cookie | Set by doubleclick.net (part of Google), the purpose of the cookie is to determine if the users' browser supports cookies. |
| U | Set by LinkedIn, Browser Identifier for users outside the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
| UserMatchHistory | LinkedIn sets this cookie for LinkedIn Ads ID syncing. |
| UserMatchHistory | This cookie is used by LinkedIn Ads to help dunnhumby measure advertising performance. More information can be found in their cookie policy. |
| visitor_id[AccountID] | This cookie is set by Salesforce Marketing Cloud Account Engagement. Unique visitor identifier used to recognize returning visitors and track their behavior. |
| visitor_id[AccountID]-hash | This cookie is set by Salesforce Marketing Cloud Account Engagement. Secure hash of the visitor ID to validate the visitor and prevent tampering. |
| yt-remote-connected-devices | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
| _gcl_au | Set by Google Tag Manager to store and track conversion events. It is typically associated with Google Ads, but may be set even if no active ad campaigns are running, especially when GTM is configured with default settings. The cookie helps measure the effectiveness of ad clicks in relation to site actions. |