A prima vista, sembra un'equazione semplice: più insight = migliori risultati. Dopotutto, più conosci i clienti e le loro abitudini d’acquisto, più dovrebbe essere facile anticipare le loro esigenze.
In pratica, però, non è sempre così. Recentemente, ho partecipato alla conferenza annuale della Category Management Association (CMA) a Dallas. Lì, ho avuto il piacere di parlare con molti retailer e brand di beni di consumo confezionati (CPG). Uno dei temi ricorrenti durante queste conversazioni è stata la difficoltà che queste organizzazioni incontrano nel cercare di trasformare gli insight in azioni.
Questa sfida tende ad essere particolarmente marcata nell'area della scelta assortimentale. I retailer e i brand possiedono una grande quantità di dati da cui attingere per prendere decisioni sull'assortimento, ma spesso faticano ad utilizzare queste informazioni in modo efficace. Di conseguenza, sebbene possano aspirare a creare un assortimento che sia in linea con i clienti e si distingua, la realtà è spesso un po' diversa.
Le conversazioni che ho avuto all'evento CMA mi hanno fatto riflettere, e credo che ci siano cinque motivi principali per cui avere più insight non porti sempre ad un maggiore successo commerciale.
Esaminiamo ciascuno di questi motivi e cosa si può fare per affrontarli.
Oggi, la stragrande maggioranza degli strumenti di assortimento si basa solo sui dati di performance. Invece, la nostra piattaforma, dunnhumby Assortment
è una delle poche a incorporare i dati di fedeltà dei clienti. Di conseguenza, è anche uno degli unici tool in grado di rispondere accuratamente ai bisogni in evoluzione dei clienti.
Naturalmente, questo porta a molto tempo ed energie sprecati, ed è proprio per questo che dunnhumby Assortment affronta direttamente questa disconnessione. Assortment offre uno spazio collaborativo in cui i team di vendite, CatMan e planogramma possono lavorare insieme in modo efficace.
Inoltre, dunnhumby Assortment utilizza algoritmi di intelligenza artificiale (IA) all'avanguardia per generare raccomandazioni "consapevoli dello spazio". Le metodologie di machine learning aiutano a garantire che, oltre ad essere centrati sul cliente e commercialmente sostenibili, gli assortimenti siano ottimizzati anche in base ai vincoli fisici di ciascun negozio. Questo si traduce in una maggiore efficienza e risultati migliori.
Ma cosa succederebbe se sapessi che, mentre la tua categoria sta diminuendo, il tuo brand sta crescendo? Oppure, come retailer, cosa succederebbe se scoprissi che una delle tue categorie sta crescendo mentre sta diminuendo in altre insegne? Questo è un vero insight, perché ti fornisce una base solida da cui agire.
Slegato da qualsiasi altro contesto, il dato grezzo tende ad essere inutile, nel migliore dei casi, e fuorviante nel peggiore. Quindi, mentre più insight possono portare a un maggiore successo in negozio, più dati difficilmente lo faranno.
In dunnhumby, ci concentriamo nel trovare l'equilibrio tra ciò che è ottimale e ciò che è raggiungibile.
Vuoi scoprire come dunnhumby Assortment può aiutarti a trasformare i dati in insight azionabili? Per maggiori informazioni visita dunnhumby Assortment oppure contatta il nostro Business Development Manager in Italia, Marco Metti: [email protected].
Create customer-centric ranges using AI-powered science
Enable Customer-centric RecommendationsCookie | Description |
---|---|
cli_user_preference | The cookie is set by the GDPR Cookie Consent plugin and is used to store the yes/no selection the consent given for cookie usage. It does not store any personal data. |
cookielawinfo-checkbox-advertisement | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category . |
cookielawinfo-checkbox-analytics | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Analytics" category . |
cookielawinfo-checkbox-necessary | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
CookieLawInfoConsent | The cookie is set by the GDPR Cookie Consent plugin and is used to store the summary of the consent given for cookie usage. It does not store any personal data. |
viewed_cookie_policy | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
wsaffinity | Set by the dunnhumby website, that allows all subsequent traffic and requests from an initial client session to be passed to the same server in the pool. Session affinity is also referred to as session persistence, server affinity, server persistence, or server sticky. |
Cookie | Description |
---|---|
passster | Set by Passster to remember that a visitor has entered a correct password, so they don’t have to re-enter it across protected pages. |
wordpress_test_cookie | WordPress cookie to read if cookies can be placed, and lasts for the session. |
wp_lang | This cookie is used to remember the language chosen by the user while browsing. |
Cookie | Description |
---|---|
fs_cid | Set by FullStory to correlate sessions for diagnostics and session consistency; not always set. |
fs_lua | Set by FullStory to record the time of the user’s last activity, helping manage session timeouts. |
fs_session | Set by FullStory to manage session flow and recording. Not always visible or applicable across all implementations. |
fs_uid | Set by FullStory to uniquely identify a user’s browser. Used for session replay and user analytics. Does not contain personal data directly. |
VISITOR_INFO1_LIVE | Set by YouTube to estimate user bandwidth and improve video quality by adjusting playback speed. |
VISITOR_PRIVACY_METADATA | Set by YouTube to store privacy preferences and metadata related to user consent and settings. |
vuid | Vimeo installs this cookie to collect tracking information by setting a unique ID to embed videos to the website. |
YSC | Set by YouTube to track user sessions and maintain video playback state during a browser session. |
_ga | The _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors. |
_ga_* | Set by Google Analytics to persist session state. |
_gid | Installed by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously. |
_lfa | This cookie is set by the provider Leadfeeder to identify the IP address of devices visiting the website, in order to retarget multiple users routing from the same IP address. |
__Secure-ROLLOUT_TOKEN | YouTube sets this cookie via embedded videos to manage feature rollouts. |
Cookie | Description |
---|---|
aam_uuid | Set by LinkedIn, for ID sync for Adobe Audience Manager. |
AEC | Set by Google, ‘AEC’ cookies ensure that requests within a browsing session are made by the user, and not by other sites. These cookies prevent malicious sites from acting on behalf of a user without that user’s knowledge. |
AMCVS_14215E3D5995C57C0A495C55%40AdobeOrg | Set by LinkedIn, indicates the start of a session for Adobe Experience Cloud. |
AMCV_14215E3D5995C57C0A495C55%40AdobeOrg | Set by LinkedIn, Unique Identifier for Adobe Experience Cloud. |
AnalyticsSyncHistory | Set by LinkedIn, used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
bcookie | LinkedIn sets this cookie from LinkedIn share buttons and ad tags to recognise browser ID. |
bscookie | LinkedIn sets this cookie to store performed actions on the website. |
DV | Set by Google, used for the purpose of targeted advertising, to collect information about how visitors use our site. |
gpv_pn | Set by LinkedIn, used to retain and fetch previous page visited in Adobe Analytics. |
lang | Session-based cookie, set by LinkedIn, used to set default locale/language. |
lidc | Set by LinkedIn, used for routing from Share buttons and ad tags. |
lidc | LinkedIn sets the lidc cookie to facilitate data center selection. |
li_gc | Set by LinkedIn to store consent of guests regarding the use of cookies for non-essential purposes. |
li_sugr | Set by LinkedIn, used to make a probabilistic match of a user's identity outside the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
lms_analytics | Set by LinkedIn to identify LinkedIn Members in the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland) for analytics. |
lpv[AccountID] | This cookie is set by Salesforce Marketing Cloud Account Engagement. Prevents counting multiple page views within a short window to avoid duplicate tracking. |
NID | Set by Google, registers a unique ID that identifies a returning user’s device. The ID is used for targeted ads. |
OGP / OGPC | Set by Google, cookie enables the functionality of Google Maps. |
OTZ | Set by Google, used to support Google’s advertising services. This cookie is used by Google Analytics to provide an analysis of website visitors in aggregate. |
s_cc | Set by LinkedIn, used to determine if cookies are enabled for Adobe Analytics. |
s_ips | Set by LinkedIn, tracks percent of page viewed. |
s_plt | Set by LinkedIn, this cookie tracks the time that the previous page took to load. |
s_pltp | Set by LinkedIn, this cookie provides page name value (URL) for use by Adobe Analytics. |
s_ppv | Set by LinkedIn, used by Adobe Analytics to retain and fetch what percentage of a page was viewed. |
s_sq | Set by LinkedIn, used to store information about the previous link that was clicked on by the user by Adobe Analytics. |
s_tp | Set by LinkedIn, this cookie measures a visitor’s scroll activity to see how much of a page they view before moving on to another page. |
s_tslv | Set by LinkedIn, used to retain and fetch time since last visit in Adobe Analytics. |
test_cookie | Set by doubleclick.net (part of Google), the purpose of the cookie is to determine if the users' browser supports cookies. |
U | Set by LinkedIn, Browser Identifier for users outside the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
UserMatchHistory | LinkedIn sets this cookie for LinkedIn Ads ID syncing. |
UserMatchHistory | This cookie is used by LinkedIn Ads to help dunnhumby measure advertising performance. More information can be found in their cookie policy. |
visitor_id[AccountID] | This cookie is set by Salesforce Marketing Cloud Account Engagement. Unique visitor identifier used to recognize returning visitors and track their behavior. |
visitor_id[AccountID]-hash | This cookie is set by Salesforce Marketing Cloud Account Engagement. Secure hash of the visitor ID to validate the visitor and prevent tampering. |
yt-remote-connected-devices | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
_gcl_au | Set by Google Tag Manager to store and track conversion events. It is typically associated with Google Ads, but may be set even if no active ad campaigns are running, especially when GTM is configured with default settings. The cookie helps measure the effectiveness of ad clicks in relation to site actions. |