Whether or not you have spent any time online lately, you have surely become aware of a new wave of Artificial Intelligence platforms. From impressively coherent text to out of this world imagery, AI has been shaping digital experiences and is the subject of speculation from business leaders and politicians about how this technology will fundamentally change society. In the context of retail analytics, several companies have introduced new AI capabilities ranging from voice-activated interfaces for queries to bold claims about automated insights. Let’s explore what exactly AI is, how it may change our industry, and what retail leaders should expect in the coming years.
Before we delve in, it is worth noting that this is a very large, dynamic field with lots of advances occurring all the time. The goal of this article is to describe the current state of the industry as of Summer 2023 for an audience of curious beginners.
Artificial Intelligence is a broad category of software that aims to replicate human cognition to perform tasks. For example, facial recognition systems for unlocking phones or setting a timer with Siri are everyday instances of AI. There are several terms under this umbrella that are also important to know, including: Machine Learning, and Deep Learning, Generative Artificial Intelligence.
Machine Learning is an approach to AI that takes data from the past and training algorithms to create models that can perform highly complex tasks without being explicitly programmed.
Deep Learning is a method in AI that teaches computers to process data in a way inspired by the human brain, using neural networks to recognize complex patterns in pictures, text, sounds, and other data to produce insights and predications.
Generative AI is a subset of Deep Learning that uses neural networks to identify the patterns and structures within existing data to generate new and original content, like ChatGPT or DALL-E which produce new text and imagery. Most of the new, headline-grabbing advances have occurred in this area of the field.
It is important to note that all these kinds of AI are dependent on the training data set, the tuning of the model, and the application of the model. ChatGPT, a large language model, is well positioned to guess what words may come next in a sentence but is not designed to be accurate in the information it provides. That is, if you ask ChatGPT to create a legal brief for you with citations, it may "hallucinate" the citations to cases that do not exist.
What is new today is the emergence of these Generative AI platforms, most notably ChatGPT, which can not only find the patterns in a large data set but can also synthesize those patterns back to a user in a novel piece of content. Before this generation of AI emerged, the scope of tasks AI could accomplish was much narrower.
For the data analytics firms making their first big foray into AI, we welcome you to the party. In almost every core domain, dunnhumby has some form of AI already deployed. dunnhumby Assortment uses AI to create customer decision trees and assign preliminary names to the need states, in addition to calculating the impact of adding or removing products to the set. dunnhumby Price and dunnhumby Promo both use AI in demand modelling, forecasting, and optimization of pricing and promotions. Personalization is also a key area where AI can be applied effectively. AI can be used to develop propensity models, determining how likely a customer is to try an item they have never purchased, or can be used to predict their likelihood of churning out of a retailer. Knowing information like this can fuel personalization campaigns to encourage category expansion or retain shoppers before they’ve left the store altogether.
A good use case for AI is categorizing products. Often, the process of determining where products fit in a hierarchy or determining how they are used seems simple at a first glance, but rapidly becomes more complicated as products blur category lines. For example, is Bachan’s Japanese BBQ Sauce a BBQ sauce or an Asian Sauce/Marinade? Using a program trained to categorize items can place these items rapidly, and a human just needs to review the results to ensure they make sense, as the below visual shows.
The new Generative AI models are being tested today to address a variety of challenges. With the ability to rapidly generate limitless amounts of copy writing, every customer receiving a targeted email could also get a highly personalized note thanking them for their business. Generative AI may also enable the rapid production of content like category review decks. These could be produced quickly and passed to a human analyst who can review the data to ensure accuracy and finalize the insights and recommendations.
While the promise of rapid, actionable insights is alluring, it's important to contextualize the output from AI and ensure it’s applied to solve the right kind of problems. The above story about ChatGPT producing fictitious court cases is a great warning of the pitfalls of AI. Relying solely on an AI to produce a final, high impact decision on its own remains outside the scope of the programs today. Human interpretation, guidance, and application are still required at this stage. However, what AI can do well is to rapidly and iteratively do work that currently may take an analyst quite a bit of time - for example, quickly building several pricing scenarios or getting suggestions for different courses of action with estimated impacts or hunting for potential patterns in large data sets. AI will augment the work teams are already doing, helping them move more quickly and freeing them from busywork through automation.
There are also practical limits to leveraging AI in all parts of a business today. First, not all the knowledge in your business exists in a format that is consumable by AI, and may never be. For example, there is institutional knowledge that an AI cannot easily ingest, like contextual knowledge about a strategy shift the company undertook twelve years ago. Further, even more fundamental is the requirement of data, and massive amounts at that, to build and train these models. Without usable data on the relevant aspects of a retailer’s business, even the most advanced AI model is essentially a store with no product on the shelves. Collecting, cleaning, and storing data is a prerequisite for successful implementation of any kind of AI.
Another limitation for the application of AI is governance. Basically, to hand over key functions of the business to an AI application, users need some level of confidence in what the tool is doing. However, many more advanced models are difficult to explain. This black box approach may not be an issue in very isolated situations, like targeting customers for personalized coupons, but becomes an issue in business-critical processes.
Retail leaders today should be looking to AI to 1) speed up routine tasks in limited-scope domains, 2) deliver new ways of thinking about problems, and 3) identify key patterns with limited data. AI likely won’t immediately replace roles today but may be able to supplement them in a way that drives greater efficiency across the organization and provides more robust information to decision makers. There is tremendous promise, but also quite a bit of theatrics around the technology today. While it can be powerful, AI needs to be applied in context and retailers should look for partners who not only have powerful science, but also have deep industry expertise. Retail leaders need to be able to identify the difference between applications of AI that will drive their business forward from random acts of AI.
Make Retail Media work for your business with Customer Data Science
Retail Media solutionsPlan, execute, and measure the impact of omnichannel Retail Media
dunnhumby Sphere - Retail Media PlatformCookie | Description |
---|---|
cli_user_preference | The cookie is set by the GDPR Cookie Consent plugin and is used to store the yes/no selection the consent given for cookie usage. It does not store any personal data. |
cookielawinfo-checkbox-advertisement | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category . |
cookielawinfo-checkbox-analytics | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Analytics" category . |
cookielawinfo-checkbox-necessary | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
CookieLawInfoConsent | The cookie is set by the GDPR Cookie Consent plugin and is used to store the summary of the consent given for cookie usage. It does not store any personal data. |
viewed_cookie_policy | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
wsaffinity | Set by the dunnhumby website, that allows all subsequent traffic and requests from an initial client session to be passed to the same server in the pool. Session affinity is also referred to as session persistence, server affinity, server persistence, or server sticky. |
Cookie | Description |
---|---|
wordpress_test_cookie | WordPress cookie to read if cookies can be placed, and lasts for the session. |
wp_lang | This cookie is used to remember the language chosen by the user while browsing. |
Cookie | Description |
---|---|
CONSENT | YouTube sets this cookie via embedded youtube-videos and registers anonymous statistical data. |
vuid | Vimeo installs this cookie to collect tracking information by setting a unique ID to embed videos to the website. |
_ga | The _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors. |
_gat_gtag_UA_* | This cookie is installed by Google Analytics to store the website's unique user ID. |
_ga_* | Set by Google Analytics to persist session state. |
_gid | Installed by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously. |
_hjSessionUser_{site_id} | This cookie is set by the provider Hotjar to store a unique user ID for session tracking and analytics purposes. |
_hjSession_{site_id} | This cookie is set by the provider Hotjar to store a unique session ID, enabling session recording and behavior analysis. |
_hp2_id_* | This cookie is set by the provider Hotjar to store a unique visitor identifier for tracking user behavior and session information. |
_hp2_props.* | This cookie is set by the provider Hotjar to store user properties and session information for behavior analysis and insights. |
_hp2_ses_props.* | This cookie is set by the provider Hotjar to store session-specific properties and data for tracking user behavior during a session. |
_lfa | This cookie is set by the provider Leadfeeder to identify the IP address of devices visiting the website, in order to retarget multiple users routing from the same IP address. |
Cookie | Description |
---|---|
aam_uuid | Set by LinkedIn, for ID sync for Adobe Audience Manager. |
AEC | Set by Google, ‘AEC’ cookies ensure that requests within a browsing session are made by the user, and not by other sites. These cookies prevent malicious sites from acting on behalf of a user without that user’s knowledge. |
AMCVS_14215E3D5995C57C0A495C55%40AdobeOrg | Set by LinkedIn, indicates the start of a session for Adobe Experience Cloud. |
AMCV_14215E3D5995C57C0A495C55%40AdobeOrg | Set by LinkedIn, Unique Identifier for Adobe Experience Cloud. |
AnalyticsSyncHistory | Set by LinkedIn, used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
bcookie | LinkedIn sets this cookie from LinkedIn share buttons and ad tags to recognise browser ID. |
bscookie | LinkedIn sets this cookie to store performed actions on the website. |
DV | Set by Google, used for the purpose of targeted advertising, to collect information about how visitors use our site. |
ELOQUA | This cookie is set by Eloqua Marketing Automation Tool. It contains a unique identifier to recognise returning visitors and track their visit data across multiple visits and multiple OpenText Websites. This data is logged in pseudonymised form, unless a visitor provides us with their personal data through creating a profile, such as when signing up for events or for downloading information that is not available to the public. |
gpv_pn | Set by LinkedIn, used to retain and fetch previous page visited in Adobe Analytics. |
lang | Session-based cookie, set by LinkedIn, used to set default locale/language. |
lidc | LinkedIn sets the lidc cookie to facilitate data center selection. |
lidc | Set by LinkedIn, used for routing from Share buttons and ad tags. |
li_gc | Set by LinkedIn to store consent of guests regarding the use of cookies for non-essential purposes. |
li_sugr | Set by LinkedIn, used to make a probabilistic match of a user's identity outside the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
lms_analytics | Set by LinkedIn to identify LinkedIn Members in the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland) for analytics. |
NID | Set by Google, registers a unique ID that identifies a returning user’s device. The ID is used for targeted ads. |
OGP / OGPC | Set by Google, cookie enables the functionality of Google Maps. |
OTZ | Set by Google, used to support Google’s advertising services. This cookie is used by Google Analytics to provide an analysis of website visitors in aggregate. |
s_cc | Set by LinkedIn, used to determine if cookies are enabled for Adobe Analytics. |
s_ips | Set by LinkedIn, tracks percent of page viewed. |
s_plt | Set by LinkedIn, this cookie tracks the time that the previous page took to load. |
s_pltp | Set by LinkedIn, this cookie provides page name value (URL) for use by Adobe Analytics. |
s_ppv | Set by LinkedIn, used by Adobe Analytics to retain and fetch what percentage of a page was viewed. |
s_sq | Set by LinkedIn, used to store information about the previous link that was clicked on by the user by Adobe Analytics. |
s_tp | Set by LinkedIn, this cookie measures a visitor’s scroll activity to see how much of a page they view before moving on to another page. |
s_tslv | Set by LinkedIn, used to retain and fetch time since last visit in Adobe Analytics. |
test_cookie | Set by doubleclick.net (part of Google), the purpose of the cookie is to determine if the users' browser supports cookies. |
U | Set by LinkedIn, Browser Identifier for users outside the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
UserMatchHistory | LinkedIn sets this cookie for LinkedIn Ads ID syncing. |
UserMatchHistory | This cookie is used by LinkedIn Ads to help dunnhumby measure advertising performance. More information can be found in their cookie policy. |
VISITOR_INFO1_LIVE | A cookie set by YouTube to measure bandwidth that determines whether the user gets the new or old player interface. |
YSC | YSC cookie is set by YouTube and is used to track the views of embedded videos on YouTube pages. |
yt-remote-connected-devices | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
yt-remote-device-id | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
yt.innertube::nextId | This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen. |
yt.innertube::requests | This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen. |
_gcl_au | Set by Google Analytics, to take information in advert clicks and store it in a 1st party cookie so that conversions can be attributed outside of the landing page. |