Look around the grocery retail industry and it is increasingly evident that brands are eyeing the lucrative high-margin retail media business. This is an area in exponential growth and it’s easy to see why when you consider the pressures it can help to ease for grocery retailers – from margin pressures due to accelerated adoption of digital channels and CPG manufacturers demanding better ROI from their marketing investments, to tighter privacy standards around third-party browser cookies which make it difficult to personalise customer experience.
Retail media businesses are built on the foundations of a retailer’s first-party data, based on customers’ online and instore transactions. This foundation allows CPG (Consumer Packaged Goods) brands to target audiences based on actual purchase behaviour and understand campaign effectiveness through closed-loop reporting – delivering personalised shopping experiences to customers in the process. Retailers are building the retail media ecosystem to deliver on this ‘win-win-win’ promise for all stakeholders and the rewards can be lucrative.
This opportunity has promoted as shift in retailer focus and they are working hard to develop new capabilities and tech-stacks in the areas of data management, data science and audience management in order to capitalise. For most of the retailers, these are new capabilities and so they do not necessarily have the right expertise in-house to build and deploy them at scale. The solution lies in implementing a combination of strategies including bringing in outside talent with relevant experience, setting-up in-house digital centres of excellence and working with third parties.
However, despite these opportunities, the data science capabilities needed to power the retail media business (both in terms of building the right audiences as well as measuring campaign success for CPGs based on robust approaches) are receiving much less attention from the retailers than they ideally should.
To highlight this, let’s examine the role and the requirements of data science in retail media.
The value chain of a retail media campaign involves three facets; campaign planning, audience targeting and activation, and measurement. Data science and machine learning algorithms play an important role across all stages of this value chain and I have highlighted some illustrative use-cases at different stages of a retail media campaign below.
At this stage, CPG brands are typically interested in understanding which types of audience segments to target, when to target them, which channels to target them through and what is the right discount to offer, amongst others. Some examples of the underlying machine learning algorithms here include product seasonality models, understanding customers’ propensity to respond to different advertising channels and price elasticity models.
The campaign planning stage also includes identifying the right sample size of targeted customer base or stores to be able to effectively measure the campaign impact against control groups.
Traditionally, CPGs brands have been happy with targeting audiences based on demographics, intent or basic behavioural segments such as ‘past buyers’. Now they are now interested in getting to the next stage. Retail media lends itself really well to more sophisticated machine learning-based audiences such as customers likely to decline in future, new product experimenters and brand switchers. Dunnhumby’s own experience in grocery retail shows us that the science-based audiences perform much better, resulting in up to 2x uplift in return on advertising spend compared to descriptive audiences.
Although retail media monetisation opens-up a new high margin new revenue stream for retailers, they need to ensure that the focus on maximising revenues does not come at the cost of customer experience. For example, customers are not likely to have a very positive experience if they are targeted with products that they are not likely to purchase, or they are targeted with multiple offers on similar products from competing brands at the same time. This makes it imperative for retailers to have effective ‘air traffic control’ systems across all media channels, which includes ecommerce platforms, in-store and offline.
Finally, since closed-loop measurement is one of the key drivers behind the adoption of retail media, the CPG brands expect that the underlying measurement methodologies are robust.
The best-in-class measurement solutions ensure:
This is something which is done poorly all too often in the industry today, given that campaign reporting is based on clicks and conversions and not incremental uplift driven by the campaign.
As the retail media ecosystem gains more maturity, CPG brands would also be keen to invest in omni-channel campaigns to drive better customer engagement and ROI on their marketing investments. Unlike pureplay digital channels, retail media includes both digital (onsite/offsite/email etc) and non-digital (direct mails, Instore POS etc) channels. This implies that the underlying multichannel attribution algorithms will need to be evolved for the different use cases in retail media.
Retailers also need to have the right combination of tools and experiments to understand the long-term impact. This includes the long-term impact of each of the retail media channels and their combinations on customer retention and driving incremental sales.
For example, a particular channel may drive short-term customer engagement but may not necessarily drive customer retention in the longer-run. Understanding these nuances can help retailers design the right incentives for CPG brands to invest in channels which work best for their customer base.
The opportunities are plentiful and tangible, but strong data science capabilities are key to building a sustainable media business that can deliver a sales uplift for retailers, better return on actual spend for brands and enhance customer satisfaction and loyalty too.
Building the right underlying data architecture, technical infrastructure, people skills and leadership vision to harness data science at scale can go a long way in driving a successful customer first retail media business.
Want to know more about how dunnhumby can help with retail media? Visit dunnhumby.com/retailers/retail-media/
Make Retail Media work for your business with Customer Data Science
Retail Media solutionsHelping brands get the most from retail media
Audience Targeting solutionsCookie | Description |
---|---|
cli_user_preference | The cookie is set by the GDPR Cookie Consent plugin and is used to store the yes/no selection the consent given for cookie usage. It does not store any personal data. |
cookielawinfo-checkbox-advertisement | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category . |
cookielawinfo-checkbox-analytics | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Analytics" category . |
cookielawinfo-checkbox-necessary | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
CookieLawInfoConsent | The cookie is set by the GDPR Cookie Consent plugin and is used to store the summary of the consent given for cookie usage. It does not store any personal data. |
viewed_cookie_policy | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
wsaffinity | Set by the dunnhumby website, that allows all subsequent traffic and requests from an initial client session to be passed to the same server in the pool. Session affinity is also referred to as session persistence, server affinity, server persistence, or server sticky. |
Cookie | Description |
---|---|
passster | Set by Passster to remember that a visitor has entered a correct password, so they don’t have to re-enter it across protected pages. |
wordpress_test_cookie | WordPress cookie to read if cookies can be placed, and lasts for the session. |
wp_lang | This cookie is used to remember the language chosen by the user while browsing. |
Cookie | Description |
---|---|
fs_cid | Set by FullStory to correlate sessions for diagnostics and session consistency; not always set. |
fs_lua | Set by FullStory to record the time of the user’s last activity, helping manage session timeouts. |
fs_session | Set by FullStory to manage session flow and recording. Not always visible or applicable across all implementations. |
fs_uid | Set by FullStory to uniquely identify a user’s browser. Used for session replay and user analytics. Does not contain personal data directly. |
VISITOR_INFO1_LIVE | Set by YouTube to estimate user bandwidth and improve video quality by adjusting playback speed. |
VISITOR_PRIVACY_METADATA | Set by YouTube to store privacy preferences and metadata related to user consent and settings. |
vuid | Vimeo installs this cookie to collect tracking information by setting a unique ID to embed videos to the website. |
YSC | Set by YouTube to track user sessions and maintain video playback state during a browser session. |
_ga | The _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors. |
_ga_* | Set by Google Analytics to persist session state. |
_gid | Installed by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously. |
_lfa | This cookie is set by the provider Leadfeeder to identify the IP address of devices visiting the website, in order to retarget multiple users routing from the same IP address. |
__Secure-ROLLOUT_TOKEN | YouTube sets this cookie via embedded videos to manage feature rollouts. |
Cookie | Description |
---|---|
aam_uuid | Set by LinkedIn, for ID sync for Adobe Audience Manager. |
AEC | Set by Google, ‘AEC’ cookies ensure that requests within a browsing session are made by the user, and not by other sites. These cookies prevent malicious sites from acting on behalf of a user without that user’s knowledge. |
AMCVS_14215E3D5995C57C0A495C55%40AdobeOrg | Set by LinkedIn, indicates the start of a session for Adobe Experience Cloud. |
AMCV_14215E3D5995C57C0A495C55%40AdobeOrg | Set by LinkedIn, Unique Identifier for Adobe Experience Cloud. |
AnalyticsSyncHistory | Set by LinkedIn, used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
bcookie | LinkedIn sets this cookie from LinkedIn share buttons and ad tags to recognise browser ID. |
bscookie | LinkedIn sets this cookie to store performed actions on the website. |
DV | Set by Google, used for the purpose of targeted advertising, to collect information about how visitors use our site. |
gpv_pn | Set by LinkedIn, used to retain and fetch previous page visited in Adobe Analytics. |
lang | Session-based cookie, set by LinkedIn, used to set default locale/language. |
lidc | Set by LinkedIn, used for routing from Share buttons and ad tags. |
lidc | LinkedIn sets the lidc cookie to facilitate data center selection. |
li_gc | Set by LinkedIn to store consent of guests regarding the use of cookies for non-essential purposes. |
li_sugr | Set by LinkedIn, used to make a probabilistic match of a user's identity outside the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
lms_analytics | Set by LinkedIn to identify LinkedIn Members in the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland) for analytics. |
lpv[AccountID] | This cookie is set by Salesforce Marketing Cloud Account Engagement. Prevents counting multiple page views within a short window to avoid duplicate tracking. |
NID | Set by Google, registers a unique ID that identifies a returning user’s device. The ID is used for targeted ads. |
OGP / OGPC | Set by Google, cookie enables the functionality of Google Maps. |
OTZ | Set by Google, used to support Google’s advertising services. This cookie is used by Google Analytics to provide an analysis of website visitors in aggregate. |
s_cc | Set by LinkedIn, used to determine if cookies are enabled for Adobe Analytics. |
s_ips | Set by LinkedIn, tracks percent of page viewed. |
s_plt | Set by LinkedIn, this cookie tracks the time that the previous page took to load. |
s_pltp | Set by LinkedIn, this cookie provides page name value (URL) for use by Adobe Analytics. |
s_ppv | Set by LinkedIn, used by Adobe Analytics to retain and fetch what percentage of a page was viewed. |
s_sq | Set by LinkedIn, used to store information about the previous link that was clicked on by the user by Adobe Analytics. |
s_tp | Set by LinkedIn, this cookie measures a visitor’s scroll activity to see how much of a page they view before moving on to another page. |
s_tslv | Set by LinkedIn, used to retain and fetch time since last visit in Adobe Analytics. |
test_cookie | Set by doubleclick.net (part of Google), the purpose of the cookie is to determine if the users' browser supports cookies. |
U | Set by LinkedIn, Browser Identifier for users outside the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
UserMatchHistory | LinkedIn sets this cookie for LinkedIn Ads ID syncing. |
UserMatchHistory | This cookie is used by LinkedIn Ads to help dunnhumby measure advertising performance. More information can be found in their cookie policy. |
visitor_id[AccountID] | This cookie is set by Salesforce Marketing Cloud Account Engagement. Unique visitor identifier used to recognize returning visitors and track their behavior. |
visitor_id[AccountID]-hash | This cookie is set by Salesforce Marketing Cloud Account Engagement. Secure hash of the visitor ID to validate the visitor and prevent tampering. |
yt-remote-connected-devices | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
_gcl_au | Set by Google Tag Manager to store and track conversion events. It is typically associated with Google Ads, but may be set even if no active ad campaigns are running, especially when GTM is configured with default settings. The cookie helps measure the effectiveness of ad clicks in relation to site actions. |