Data science doesn’t stand still. Just as computers are exponentially more powerful than they were three decades ago, the models and techniques that we apply today have changed significantly since dunnhumby was founded back in 1989.
While some of that change is down to natural evolution, much of it comes from a conscious desire to stay at the forefront of the industry. We’re strong believers in the need to keep moving forwards and innovating, not only for the good of our clients but for our people too.
As much as it’s important to look forwards, looking back can also help us understand more about how we got to where we are today. And while it isn’t possible to do justice to 33 years of progress in a single blog post, we can at least look at some of the milestone moments along the way and how they’ve helped shape both dunnhumby and retail data science as a whole.
With that in mind, let’s explore the six ages of dunnhumby’s data science so far.
While dunnhumby was around for a few years before working with Tesco on the Clubcard, it’s that pioneering programme that represents the first step on the journey towards the company as we know it today.
They may seem like basic concepts now, but our work with the Clubcard helped to define some of the foundational elements of Customer Data Science (CDS). Here, for the first time, was the longitudinal view – the ability to understand how Customers buy grocery products over time. So too was a deeper, richer understanding of shoppers that allowed us to segment them based on their purchase preferences.
From this came the opportunity to start to define Customer loyalty, something that we could take an informed view on based on trip frequency and purchasing behaviour. During this period, we also started to develop what then became some of our best-known proprietary algorithms– like the rolling ball technique, which explores item-by-item purchases to build a complete view of a shopper.
With the foundations for our approach to CDS firmly in place, we started to look at how we could refine and improve the way that we were using some key analytical techniques. During this time, we focused heavily on areas like clustering, factor analysis, decision trees and logistical regression.
The progress we made here took us much further in the direction of personalisation. We developed the ability to create true one-to-one communications, tailoring mailings based on what Customers had already purchased. Attitudinal data from smaller shopper groups added an extra dimension to our longitudinal frameworks.
We also expanded our capabilities within category management, particularly around substitutability. This enabled us to start predicting what shoppers would buy when they couldn’t find what they initially wanted – and with a very high degree of accuracy.
This third “age” saw a true step change in the way that we developed our data science. By this point, we were already working with a number of leading Retailers around the world – something that enabled us to shift towards a more collaborative approach to innovation.
Two things complemented this transition. The first was the creation of our academic partnerships programme, in which we built relationships with world leading institutions. This enabled us to invest in both the people and the science shaping the future of the industry.
The second was the completion of a number of key acquisitions, all designed to help bolster our abilities in key areas like econometric modelling and continuous optimisation. The amazing work done by many of these companies still exists in core parts of the dunnhumby product portfolio to this day.
A renewed focus on personalisation was one of the defining factors here. The entire business began to centralise around true “segment of one” Customer insights, and the delivery of hyper-relevant, deeply tailored communications. Increased investment in the science to support that, as well as the formation of a global client team brimming with subject matter experts, helped to solidify our efforts.
Across the wider industry at this point, technology was starting to transform the nature of data science, with new languages and applications like Python and PySpark helping to redefine what was possible. Ever keen to remain at the cutting edge, many of our team started to engage in the (then relatively nascent) field of machine learning by entering, setting, and winning multiple Kaggle competitions.
While our focus on machine learning up to this point had been relatively self-contained, we soon began to build up a global community around it. This helped to ensure that the core techniques and advanced methods that we’d started to develop could be employed more broadly by our data science colleagues around the world.
This mass of skills and talent helped to drive some phenomenal innovations, including ModelLab which automates the tuning and deployment of machine learning algorithms, the superfast accelerator oneFour and dunnhumby Beyond, a machine learning-powered insight tool that analyses data from more than 2.5m UK shopping trips.
Our media, category management, and price & promotion science also saw considerable evolution at this time, with greater automation helping to remove the manual burden from users.
All of which takes us full circle to today. In 2022 and beyond, we’ll be focused on the inherent potential of new technologies like quantum computing and the huge opportunities it offers in terms of speed and power over the next decade.
We’re not just fixated on the future though. We’re also looking at the day to day, and what the next trends and evolutions in data science will be. As we actively look into new sources of data like social, video and voice, we are excited about how they might transform our ability to understand Customers, keeping in mind that as we get to grips with the differing levels of quality that they present, they need to be appropriately structured, respecting data governance, privacy and ethics by design.
Wherever tomorrow takes us, it will be with the same lens we’ve always had: Customer First. The data science may change, but the belief in using it to do what’s right for shoppers never will.
A look at dunnhumby’s unique Customer Data Science, which is at the core of everything we do.
Data Science solutionsCookie | Description |
---|---|
cli_user_preference | The cookie is set by the GDPR Cookie Consent plugin and is used to store the yes/no selection the consent given for cookie usage. It does not store any personal data. |
cookielawinfo-checkbox-advertisement | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category . |
cookielawinfo-checkbox-analytics | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Analytics" category . |
cookielawinfo-checkbox-necessary | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
CookieLawInfoConsent | The cookie is set by the GDPR Cookie Consent plugin and is used to store the summary of the consent given for cookie usage. It does not store any personal data. |
viewed_cookie_policy | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
wsaffinity | Set by the dunnhumby website, that allows all subsequent traffic and requests from an initial client session to be passed to the same server in the pool. Session affinity is also referred to as session persistence, server affinity, server persistence, or server sticky. |
Cookie | Description |
---|---|
wordpress_test_cookie | WordPress cookie to read if cookies can be placed, and lasts for the session. |
wp_lang | This cookie is used to remember the language chosen by the user while browsing. |
Cookie | Description |
---|---|
CONSENT | YouTube sets this cookie via embedded youtube-videos and registers anonymous statistical data. |
vuid | Vimeo installs this cookie to collect tracking information by setting a unique ID to embed videos to the website. |
_ga | The _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors. |
_gat_gtag_UA_* | This cookie is installed by Google Analytics to store the website's unique user ID. |
_ga_* | Set by Google Analytics to persist session state. |
_gid | Installed by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously. |
_hjSessionUser_{site_id} | This cookie is set by the provider Hotjar to store a unique user ID for session tracking and analytics purposes. |
_hjSession_{site_id} | This cookie is set by the provider Hotjar to store a unique session ID, enabling session recording and behavior analysis. |
_hp2_id_* | This cookie is set by the provider Hotjar to store a unique visitor identifier for tracking user behavior and session information. |
_hp2_props.* | This cookie is set by the provider Hotjar to store user properties and session information for behavior analysis and insights. |
_hp2_ses_props.* | This cookie is set by the provider Hotjar to store session-specific properties and data for tracking user behavior during a session. |
_lfa | This cookie is set by the provider Leadfeeder to identify the IP address of devices visiting the website, in order to retarget multiple users routing from the same IP address. |
Cookie | Description |
---|---|
aam_uuid | Set by LinkedIn, for ID sync for Adobe Audience Manager. |
AEC | Set by Google, ‘AEC’ cookies ensure that requests within a browsing session are made by the user, and not by other sites. These cookies prevent malicious sites from acting on behalf of a user without that user’s knowledge. |
AMCVS_14215E3D5995C57C0A495C55%40AdobeOrg | Set by LinkedIn, indicates the start of a session for Adobe Experience Cloud. |
AMCV_14215E3D5995C57C0A495C55%40AdobeOrg | Set by LinkedIn, Unique Identifier for Adobe Experience Cloud. |
AnalyticsSyncHistory | Set by LinkedIn, used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
bcookie | LinkedIn sets this cookie from LinkedIn share buttons and ad tags to recognise browser ID. |
bscookie | LinkedIn sets this cookie to store performed actions on the website. |
DV | Set by Google, used for the purpose of targeted advertising, to collect information about how visitors use our site. |
ELOQUA | This cookie is set by Eloqua Marketing Automation Tool. It contains a unique identifier to recognise returning visitors and track their visit data across multiple visits and multiple OpenText Websites. This data is logged in pseudonymised form, unless a visitor provides us with their personal data through creating a profile, such as when signing up for events or for downloading information that is not available to the public. |
gpv_pn | Set by LinkedIn, used to retain and fetch previous page visited in Adobe Analytics. |
lang | Session-based cookie, set by LinkedIn, used to set default locale/language. |
lidc | LinkedIn sets the lidc cookie to facilitate data center selection. |
lidc | Set by LinkedIn, used for routing from Share buttons and ad tags. |
li_gc | Set by LinkedIn to store consent of guests regarding the use of cookies for non-essential purposes. |
li_sugr | Set by LinkedIn, used to make a probabilistic match of a user's identity outside the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
lms_analytics | Set by LinkedIn to identify LinkedIn Members in the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland) for analytics. |
NID | Set by Google, registers a unique ID that identifies a returning user’s device. The ID is used for targeted ads. |
OGP / OGPC | Set by Google, cookie enables the functionality of Google Maps. |
OTZ | Set by Google, used to support Google’s advertising services. This cookie is used by Google Analytics to provide an analysis of website visitors in aggregate. |
s_cc | Set by LinkedIn, used to determine if cookies are enabled for Adobe Analytics. |
s_ips | Set by LinkedIn, tracks percent of page viewed. |
s_plt | Set by LinkedIn, this cookie tracks the time that the previous page took to load. |
s_pltp | Set by LinkedIn, this cookie provides page name value (URL) for use by Adobe Analytics. |
s_ppv | Set by LinkedIn, used by Adobe Analytics to retain and fetch what percentage of a page was viewed. |
s_sq | Set by LinkedIn, used to store information about the previous link that was clicked on by the user by Adobe Analytics. |
s_tp | Set by LinkedIn, this cookie measures a visitor’s scroll activity to see how much of a page they view before moving on to another page. |
s_tslv | Set by LinkedIn, used to retain and fetch time since last visit in Adobe Analytics. |
test_cookie | Set by doubleclick.net (part of Google), the purpose of the cookie is to determine if the users' browser supports cookies. |
U | Set by LinkedIn, Browser Identifier for users outside the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
UserMatchHistory | LinkedIn sets this cookie for LinkedIn Ads ID syncing. |
UserMatchHistory | This cookie is used by LinkedIn Ads to help dunnhumby measure advertising performance. More information can be found in their cookie policy. |
VISITOR_INFO1_LIVE | A cookie set by YouTube to measure bandwidth that determines whether the user gets the new or old player interface. |
YSC | YSC cookie is set by YouTube and is used to track the views of embedded videos on YouTube pages. |
yt-remote-connected-devices | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
yt-remote-device-id | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
yt.innertube::nextId | This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen. |
yt.innertube::requests | This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen. |
_gcl_au | Set by Google Analytics, to take information in advert clicks and store it in a 1st party cookie so that conversions can be attributed outside of the landing page. |