Surtido. Gama. Combinación de productos. Llámalo como quieras, todo se reduce a lo mismo: ofrecer a los clientes aquello que quieren. Y, como muchos otros aspectos del retail de alimentación, el surtido se ha visto envuelto en la conversación sobre la inteligencia artificial. Y no es difícil entender el porqué.
Actualmente, el surtido es complejo y requiere de una inversión de tiempo. Esto exige que los retailers controlen todos los aspectos, desde las preferencias de los consumidores y la gestión de inventarios hasta las tendencias emergentes y las estrategias de la competencia. Los compradores pueden no darse cuenta, pero hay una cantidad de trabajo ingente detrás de que los productos adecuados terminen en los lugares adecuados. Aunque todo esto pueda complicar la vida de los retailers, en un futuro inmediato el panorama puede cambiar de forma drástica con la aplicación de la inteligencia artificial al surtido.
Imaginemos un surtido basado en IA. Para empezar, se acabarían los tediosos cálculos numéricos. A partir de ahí, se eliminaría la necesidad de tener en cuenta aspectos como los cambios de temperatura o que los clientes compren un nuevo sabor de refresco. En este increíble futuro, la máquina se encargará de realizar estas reflexiones dejando a los retailers la sencilla tarea de validar sus propuestas.
Pero todavía no estamos en ese momento. Como sucede con todo lo relativo a la IA, hay una brecha que salvar entre el potencial latente y la realidad práctica. Pero al mismo tiempo, no hay tanta distancia entre ellas. La Inteligencia Artificial ya está teniendo un gran impacto en el surtido, ayudando a los retailers a tomar decisiones mejores y más centradas en el cliente. Por eso creo que es momento de dejar de pensar en el potencial de la IA y empezar a hablar del impacto que ya está teniendo.
Con independencia del formato o del tamaño, el surtido es algo en lo que cualquier retailer necesita centrarse ahora mismo, principalmente por dos razones principales:
Es más fácil decirlo que hacerlo, ya que incluso el proceso de crear gamas adaptadas localmente puede ser extremadamente complejo. Para ello necesitas una comprensión profunda del comportamiento de compra de esa tienda específica. Tienes que ser capaz de predecir cómo se comportarán los productos, incluso si nunca antes han estado en el surtido. Y más allá de esto, necesitas comprender la tienda en sí misma.
Este último punto es especialmente importante. Piensa de este modo: ¿para qué tomarte la molestia de crear una gama de productos perfecta para tus clientes si no cabe en los lineales? Así que, además de entender a los compradores, hay que comprender también las limitaciones físicas de cada tienda: cómo es, qué estanterías tiene, cuántos productos caben, etcétera.
Todo esto, por supuesto, es solo para una tienda. Para ofrecer esta visión a escala, necesitarías el mismo nivel de insights de los comportamientos de los clientes y de la disposición de cada tienda. A partir de ahí debes crear planogramas individuales, lo que supone una cantidad de trabajo nada desdeñable.
Todos los problemas que hemos comentado ya los resuelve dunnhumby Assortment, nuestro producto estrella para el surtido. Estamos aplicando IA puntera a los retos actuales del surtido y proporcionando mejores resultados para los clientes en el proceso.
Tomemos como ejemplo la prueba que hicimos en la categoría de productos lácteos para un gran retailer. Cuando dunnhumby Assortment indicó que los batidos de proteínas estaban sobreindexados en una tienda concreta, nuestra primera suposición fue que había un problema con los datos. Lo que ocurría era que la tienda estaba en el corazón de una ciudad estudiantil, entre dos gimnasios.
¿Habría llegado a esta conclusión un encargado de tienda por sí mismo? Dado su gran conocimiento de la zona, casi seguro que sí. Sin embargo, quizás no sepa qué productos retirar para dar paso a ese exceso de existencias, o qué otros productos dentro de la amplitud de la gama y la tienda también podrían ser apropiados. ¿Y cómo podría gestionar esto un retailer en cientos de tiendas de una misma región? Gracias a la Inteligencia Artificial de nuestras herramientas, no tendrían que hacerlo.
Mientras imaginamos el potencial de la IA mañana, no nos olvidemos lo que ya está aquí y que es capaz de hacer grandes cosas. Las gamas específicas de tiendas pueden sonar como algo del futuro, pero la verdad es que son ya una realidad tangible.
Con un conjunto de funciones basadas en IA incluyendo la creación de planogramas automática, recomendaciones de surtido inteligentes y analítica predictiva, dunnhumby Assortment puede ayudarte a reforzar tus equipos y a tomar mejores decisiones para tus clientes. Contacta con nuestro equipo para solicitar una demo.
1 Google/Ipsos, Global, Global Retail Study, 2019
2 Prime market: YouTube star Logan Paul’s £2 energy drink listed on eBay for £10k – The Guardian, 28 October 2022
Create customer-centric ranges using AI-powered science
Enable AI-Powered Assortment PlanningCookie | Description |
---|---|
cli_user_preference | The cookie is set by the GDPR Cookie Consent plugin and is used to store the yes/no selection the consent given for cookie usage. It does not store any personal data. |
cookielawinfo-checkbox-advertisement | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category . |
cookielawinfo-checkbox-analytics | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Analytics" category . |
cookielawinfo-checkbox-necessary | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
CookieLawInfoConsent | The cookie is set by the GDPR Cookie Consent plugin and is used to store the summary of the consent given for cookie usage. It does not store any personal data. |
viewed_cookie_policy | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
wsaffinity | Set by the dunnhumby website, that allows all subsequent traffic and requests from an initial client session to be passed to the same server in the pool. Session affinity is also referred to as session persistence, server affinity, server persistence, or server sticky. |
Cookie | Description |
---|---|
wordpress_test_cookie | WordPress cookie to read if cookies can be placed, and lasts for the session. |
wp_lang | This cookie is used to remember the language chosen by the user while browsing. |
Cookie | Description |
---|---|
CONSENT | YouTube sets this cookie via embedded youtube-videos and registers anonymous statistical data. |
fs_cid | This cookie is set by FullStory to store the user’s cookie consent preferences for session tracking. |
fs_lua | This cookie is set by FullStory to record the time of the user’s last activity, helping manage session timeouts. |
fs_uid | This cookie is set by FullStory to assign a unique ID to each user and record session replays and interactions. |
osano_consentmanager | This cookie is set by FullStory’s consent management system (Osano) to store the user’s cookie consent preferences and ensure compliance with privacy regulations. |
osano_consentmanager_uuid | This cookie is set by FullStory’s consent management system (Osano) to uniquely identify a user’s consent session for consistent consent tracking. |
vuid | Vimeo installs this cookie to collect tracking information by setting a unique ID to embed videos to the website. |
yt-remote-device-id | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
yt.innertube::nextId | This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen. |
yt.innertube::requests | This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen. |
_fs_tab_id | This temporary session value is used by FullStory to track user activity across multiple tabs. |
_ga | The _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors. |
_gat_gtag_UA_* | This cookie is set by Google Analytics to throttle request rates and limit data collection on high-traffic sites. |
_ga_* | Set by Google Analytics to persist session state. |
_gid | Installed by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously. |
_lfa | This cookie is set by the provider Leadfeeder to identify the IP address of devices visiting the website, in order to retarget multiple users routing from the same IP address. |
__q_state_* | This cookie is set by FullStory to track session state and user interactions across page views. It helps rebuild session context for accurate session replay and analytics. |
Cookie | Description |
---|---|
aam_uuid | Set by LinkedIn, for ID sync for Adobe Audience Manager. |
AEC | Set by Google, ‘AEC’ cookies ensure that requests within a browsing session are made by the user, and not by other sites. These cookies prevent malicious sites from acting on behalf of a user without that user’s knowledge. |
AMCVS_14215E3D5995C57C0A495C55%40AdobeOrg | Set by LinkedIn, indicates the start of a session for Adobe Experience Cloud. |
AMCV_14215E3D5995C57C0A495C55%40AdobeOrg | Set by LinkedIn, Unique Identifier for Adobe Experience Cloud. |
AnalyticsSyncHistory | Set by LinkedIn, used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
bcookie | LinkedIn sets this cookie from LinkedIn share buttons and ad tags to recognise browser ID. |
bscookie | LinkedIn sets this cookie to store performed actions on the website. |
DV | Set by Google, used for the purpose of targeted advertising, to collect information about how visitors use our site. |
ELOQUA | This cookie is set by Eloqua Marketing Automation Tool. It contains a unique identifier to recognise returning visitors and track their visit data across multiple visits and multiple OpenText Websites. This data is logged in pseudonymised form, unless a visitor provides us with their personal data through creating a profile, such as when signing up for events or for downloading information that is not available to the public. |
gpv_pn | Set by LinkedIn, used to retain and fetch previous page visited in Adobe Analytics. |
lang | Session-based cookie, set by LinkedIn, used to set default locale/language. |
lidc | LinkedIn sets the lidc cookie to facilitate data center selection. |
lidc | Set by LinkedIn, used for routing from Share buttons and ad tags. |
li_gc | Set by LinkedIn to store consent of guests regarding the use of cookies for non-essential purposes. |
li_sugr | Set by LinkedIn, used to make a probabilistic match of a user's identity outside the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
lms_analytics | Set by LinkedIn to identify LinkedIn Members in the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland) for analytics. |
NID | Set by Google, registers a unique ID that identifies a returning user’s device. The ID is used for targeted ads. |
OGP / OGPC | Set by Google, cookie enables the functionality of Google Maps. |
OTZ | Set by Google, used to support Google’s advertising services. This cookie is used by Google Analytics to provide an analysis of website visitors in aggregate. |
s_cc | Set by LinkedIn, used to determine if cookies are enabled for Adobe Analytics. |
s_ips | Set by LinkedIn, tracks percent of page viewed. |
s_plt | Set by LinkedIn, this cookie tracks the time that the previous page took to load. |
s_pltp | Set by LinkedIn, this cookie provides page name value (URL) for use by Adobe Analytics. |
s_ppv | Set by LinkedIn, used by Adobe Analytics to retain and fetch what percentage of a page was viewed. |
s_sq | Set by LinkedIn, used to store information about the previous link that was clicked on by the user by Adobe Analytics. |
s_tp | Set by LinkedIn, this cookie measures a visitor’s scroll activity to see how much of a page they view before moving on to another page. |
s_tslv | Set by LinkedIn, used to retain and fetch time since last visit in Adobe Analytics. |
test_cookie | Set by doubleclick.net (part of Google), the purpose of the cookie is to determine if the users' browser supports cookies. |
U | Set by LinkedIn, Browser Identifier for users outside the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
UserMatchHistory | LinkedIn sets this cookie for LinkedIn Ads ID syncing. |
UserMatchHistory | This cookie is used by LinkedIn Ads to help dunnhumby measure advertising performance. More information can be found in their cookie policy. |
VISITOR_INFO1_LIVE | A cookie set by YouTube to measure bandwidth that determines whether the user gets the new or old player interface. |
YSC | YSC cookie is set by YouTube and is used to track the views of embedded videos on YouTube pages. |
yt-remote-connected-devices | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
_gcl_au | Set by Google Tag Manager to store and track conversion events. It is typically associated with Google Ads, but may be set even if no active ad campaigns are running, especially when GTM is configured with default settings. The cookie helps measure the effectiveness of ad clicks in relation to site actions. |