Personalisation has a huge impact on customer behaviours. A study of Singaporean shoppers conducted at the start of 2021 revealed that 71% are more likely to buy from brands that treat them as an individual1, for instance. And in South East Asia, a third of shoppers say that personalised promotions will entice them to visit a store in person, rather than researching or buying online2.
With those numbers in mind, it’s unsurprising that many shoppers have come to see personalisation as something of a basic requirement in regard to their retail experiences; more than half of customers say that they now expect offers to be tailored specifically to them, with two-thirds of the opinion that retailers need to understand their unique needs3. Expectations are clearly growing.
Personalisation isn’t only of benefit to the shopper. For grocery retailers in particular, high-performance, product level personalisation can help customers navigate what can be an otherwise overwhelming range of items, offers, and promotions – particularly on mobile devices. Done right, that can drive sales uplift and help to grow customer loyalty alike.
Delivering on that promise, of course, is an entirely different matter. With tens of thousands of products and millions of individual customers to take into account, the sheer scale of grocery retail makes personalisation fundamentally complex. Sophisticated, granular data science is required, particularly when it comes to the practice of predictive personalisation – building offers and promotions around what customers are most likely to buy or need next.
For a modern grocer, that means creating and maintaining a pool of 1,000 or more potential personalised offers – down to a product level – and having the science to choose the best offers for every single customer regularly, normally every two to four weeks.
While it might not be immediately clear, this kind of one-to-one personalisation isn’t easily possible within the typical Marketing Tech clouds and platforms that many grocery retailers have already invested in. These platforms excel at creating customised journeys, reacting to triggers and delivering personalised messaging, but the kind of predictive, granular, and hyper-scaled personalisation described above requires an additional set of functionality and capabilities.
Crucially, these capabilities do not diminish the marketing tech that retailers have already invested in; in fact, they significant improve it. Today’s popular marketing clouds and platforms allow retailers to reach customers at scale, in many channels, and in response to many events. Predictive personalisation ensures that every single one of those communications is hyper-relevant to every customer. When combined, retailers can achieve hyper-personalisation and mass scale at once.
For predictive personalisation, data science is the key. One of the main reasons for that is because predictive personalisation isn’t just about matching products to customers. It’s also about understanding the context in which personalisation is being applied – the high-level need that the customer has at that specific point on their journey. They might be looking for inspiration, a discount, or a reward, or they might just want things to be fast and convenient; whatever it is, advanced data science can help retailers to understand, predict, and meet that need.
For shoppers, predictive personalisation is inherently useful because it enables them to get discounts and offers on products that they actually buy, right when they need them most.
As someone based in Thailand, I’ve noted the rise in digital coupons spearheaded by the likes of Lazada and FoodPanda, as well as the traditional and digital offerings from the major supermarkets. Currently these offers feel very mass-targeted, and while there are a huge number to choose from, as a shopper they’re not always that useful; not only are most of them irrelevant to me, I also need to scroll through dozens or hundreds to find the ones that are.
When predictive personalisation is done well, it flips that dynamic on its head. Whether through recommendations on a grocery website, or discounts and offers tied to a loyalty card, shoppers can get deals that are uniquely tailored to them. Even better, those deals are timely, because they’re based specifically on the likelihood of that customer needing a particular item in the near future.
Let’s look at two examples of this in action.
First, we can use predictive personalisation to save customers time. When a shopper visits the online store or opens their scan and shop app in store, predictive personalisation can present a pre-built shopping list of items the customer is predicted to need. At the end of the shopping trip, we can check back against that list and highlight any products they’ve missed. That means they’re less likely to forget something and have to make another trip.
Second, predictive personalisation can be used to deliver bespoke promotions to individual customers. Here, of the thousands of potential offers and discounts that retailers pool together, predictive personalisation can be used to identify the best ones for each customer every week. The offers are then delivered on a cadence, or in response to a trigger through the marketing cloud platform – predictive and reactive working hand in hand. As a result, customers save money on items they really need, when they really need them.
Because predictive personalisation is based largely on future customer needs, it can be an excellent way for retailers to drive footfall to their store. If you know that a shopper is likely to buy a product in the next seven days, for example, a personalised offer gives you a better chance of ensuring that they make that purchase with you.
A similar approach can be used to reach out to customers who may be in transitory states. If your data is telling you that a customer has a high likelihood to churn, an offer – or series of offers – designed to re-engage them can help maintain their loyalty.
There are financial benefits for retailers too, and those go beyond just driving sales; over the longer term, predictive personalisation can help a retailer to shift their promotional mix. Rather than focusing purely on volume price cuts, they can instead aim for a blended approach – one in which the overall discount is lower, but complemented by specific offers for different customers. That can be a huge margin driver.
The other commercial opportunity here is for retailers to monetise their personalisation activities with suppliers while respecting customer privacy, and without sharing customer data.
For brands, predictive personalisation gives them a mechanism to do things like communicate to lapsed customers, prevent existing ones from switching to a competitor, and reward loyal shoppers. Crucially, that mechanism is one that retailers can charge for on a redemption-by-redemption basis. Suppliers still benefit, of course, because they save money that would otherwise be used on untargeted mass promotion.
There are other advantages too – from smarter, and more collaborative category management, through to the ability to personalise offers around products that customers might want to try in the future. That’s something that is particularly relevant in an age where many shoppers are looking for greater inspiration in their shop.
Predictive personalisation simply gives retailers the opportunity to evolve – to move away from high-volume, mass market promotional programmes, and towards something much more sophisticated. And it does that by building on top of the marketing ecosystems retailers are already invested in.
That’s important, because in today’s competitive environment, success isn’t just about the marketing technology that retailers employ. Instead, it’s about underpinning those systems with the data science required to become truly customer-centric – something that can deliver satisfaction and growth in equal measure.
170% of Singaporean consumers want a personalized digital customer experience – TechWire Asia, 19th August 2021
2The consumer transformed – PWC, 2020
3What Are Customer Expectations, and How Have They Changed? – Salesforce, 2020
Truly understand your Customers and unlock your Customer First transformation with Strategy Development, Research & Insights and Organisation Engagement
Build a differentiated Customer strategyUnderstand changing Shopper behaviours through unique Data Science
Shopper Insights solutionsCookie | Description |
---|---|
cli_user_preference | The cookie is set by the GDPR Cookie Consent plugin and is used to store the yes/no selection the consent given for cookie usage. It does not store any personal data. |
cookielawinfo-checkbox-advertisement | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category . |
cookielawinfo-checkbox-analytics | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Analytics" category . |
cookielawinfo-checkbox-necessary | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
CookieLawInfoConsent | The cookie is set by the GDPR Cookie Consent plugin and is used to store the summary of the consent given for cookie usage. It does not store any personal data. |
viewed_cookie_policy | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
wsaffinity | Set by the dunnhumby website, that allows all subsequent traffic and requests from an initial client session to be passed to the same server in the pool. Session affinity is also referred to as session persistence, server affinity, server persistence, or server sticky. |
Cookie | Description |
---|---|
wordpress_test_cookie | WordPress cookie to read if cookies can be placed, and lasts for the session. |
wp_lang | This cookie is used to remember the language chosen by the user while browsing. |
Cookie | Description |
---|---|
CONSENT | YouTube sets this cookie via embedded youtube-videos and registers anonymous statistical data. |
fs_cid | Set by FullStory to correlate sessions for diagnostics and session consistency; not always set. |
fs_lua | Set by FullStory to record the time of the user’s last activity, helping manage session timeouts. |
fs_session | Set by FullStory to manage session flow and recording. Not always visible or applicable across all implementations. |
fs_uid | Set by FullStory to uniquely identify a user’s browser. Used for session replay and user analytics. Does not contain personal data directly. |
VISITOR_INFO1_LIVE | Set by YouTube to estimate user bandwidth and improve video quality by adjusting playback speed. |
VISITOR_PRIVACY_METADATA | Set by YouTube to store privacy preferences and metadata related to user consent and settings. |
vuid | Vimeo installs this cookie to collect tracking information by setting a unique ID to embed videos to the website. |
YSC | Set by YouTube to track user sessions and maintain video playback state during a browser session. |
yt-remote-device-id | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
yt.innertube::nextId | This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen. |
yt.innertube::requests | This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen. |
_ga | The _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors. |
_ga_* | Set by Google Analytics to persist session state. |
_gid | Installed by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously. |
_lfa | This cookie is set by the provider Leadfeeder to identify the IP address of devices visiting the website, in order to retarget multiple users routing from the same IP address. |
Cookie | Description |
---|---|
aam_uuid | Set by LinkedIn, for ID sync for Adobe Audience Manager. |
AEC | Set by Google, ‘AEC’ cookies ensure that requests within a browsing session are made by the user, and not by other sites. These cookies prevent malicious sites from acting on behalf of a user without that user’s knowledge. |
AMCVS_14215E3D5995C57C0A495C55%40AdobeOrg | Set by LinkedIn, indicates the start of a session for Adobe Experience Cloud. |
AMCV_14215E3D5995C57C0A495C55%40AdobeOrg | Set by LinkedIn, Unique Identifier for Adobe Experience Cloud. |
AnalyticsSyncHistory | Set by LinkedIn, used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
bcookie | LinkedIn sets this cookie from LinkedIn share buttons and ad tags to recognise browser ID. |
bscookie | LinkedIn sets this cookie to store performed actions on the website. |
DV | Set by Google, used for the purpose of targeted advertising, to collect information about how visitors use our site. |
ELOQUA | This cookie is set by Eloqua Marketing Automation Tool. It contains a unique identifier to recognise returning visitors and track their visit data across multiple visits and multiple OpenText Websites. This data is logged in pseudonymised form, unless a visitor provides us with their personal data through creating a profile, such as when signing up for events or for downloading information that is not available to the public. |
gpv_pn | Set by LinkedIn, used to retain and fetch previous page visited in Adobe Analytics. |
lang | Session-based cookie, set by LinkedIn, used to set default locale/language. |
lidc | Set by LinkedIn, used for routing from Share buttons and ad tags. |
lidc | LinkedIn sets the lidc cookie to facilitate data center selection. |
li_gc | Set by LinkedIn to store consent of guests regarding the use of cookies for non-essential purposes. |
li_sugr | Set by LinkedIn, used to make a probabilistic match of a user's identity outside the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
lms_analytics | Set by LinkedIn to identify LinkedIn Members in the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland) for analytics. |
NID | Set by Google, registers a unique ID that identifies a returning user’s device. The ID is used for targeted ads. |
OGP / OGPC | Set by Google, cookie enables the functionality of Google Maps. |
OTZ | Set by Google, used to support Google’s advertising services. This cookie is used by Google Analytics to provide an analysis of website visitors in aggregate. |
s_cc | Set by LinkedIn, used to determine if cookies are enabled for Adobe Analytics. |
s_ips | Set by LinkedIn, tracks percent of page viewed. |
s_plt | Set by LinkedIn, this cookie tracks the time that the previous page took to load. |
s_pltp | Set by LinkedIn, this cookie provides page name value (URL) for use by Adobe Analytics. |
s_ppv | Set by LinkedIn, used by Adobe Analytics to retain and fetch what percentage of a page was viewed. |
s_sq | Set by LinkedIn, used to store information about the previous link that was clicked on by the user by Adobe Analytics. |
s_tp | Set by LinkedIn, this cookie measures a visitor’s scroll activity to see how much of a page they view before moving on to another page. |
s_tslv | Set by LinkedIn, used to retain and fetch time since last visit in Adobe Analytics. |
test_cookie | Set by doubleclick.net (part of Google), the purpose of the cookie is to determine if the users' browser supports cookies. |
U | Set by LinkedIn, Browser Identifier for users outside the Designated Countries (which LinkedIn determines as European Union (EU), European Economic Area (EEA), and Switzerland). |
UserMatchHistory | LinkedIn sets this cookie for LinkedIn Ads ID syncing. |
UserMatchHistory | This cookie is used by LinkedIn Ads to help dunnhumby measure advertising performance. More information can be found in their cookie policy. |
yt-remote-connected-devices | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
_gcl_au | Set by Google Tag Manager to store and track conversion events. It is typically associated with Google Ads, but may be set even if no active ad campaigns are running, especially when GTM is configured with default settings. The cookie helps measure the effectiveness of ad clicks in relation to site actions. |